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Two probabilistic schedules of reinforcement, one richer in reinforcement, the other
leaner, were overlapping stimuli to be discriminated in a choice situation. One of two
schedules was in effect for 12 seconds. Then, during a 6-second choice period, the first
left-key peck was reinforced if the richer schedule had been in effect, and the first right-
key peck was reinforced if the leaner schedule had been in effect. The two schedule stimuli
may be viewed as two binomial distributions of the number of reinforcement opportunities.
Each schedule yielded different frequencies of 16 substimuli. Each substimulus had a
particular type of outcome pattern for the 12 seconds during which a schedule was in
effect, and consisted of four consecutive light-cued 3-second T-cycles, each having 0 or 1
reinforced center-key pecks. Substimuli therefore contained 0 to 4 reinforcers. On any 3-
second cycle, the first center-key peck darkened that key and was reinforced with proba-
bility .75 or .25 in the richer or leaner schedules, respectively. In terms of the theory of
signal detection, detectability neared the maximum possible d' for all four pigeons. Left-
key peck probability increased when number of reinforcers in a substimulus increased,
when these occurred closer to choice, or when pellets were larger for correct left-key pecks
than for correct right-key pecks. Averaged over different temporal patterns of reinforcement
in a substimulus, substimuli with the same number of reinforcers produced choice proba-
bilities that matched relative expected payoff rather than maximized one alternative.
Key words: discrimination, decision rules, reinforcement, memory, matching, maximizing,

signal detection, T-schedule, key peck, pigeon

Most studies of reinforcement schedules
have been concerned with the effect of rein-
forcement schedules on responding maintained
by these schedules. The present approach is
to examine discriminative properties of prob-
abilistic reinforcement schedules in a choice
procedure (Estes, Burke, Atkinson, & Frank-
mann, 1957; Shimp, 1973). Psychophysical
techniques then permit an analysis of stimu-
lus control by reinforcement schedules. Ril-
ling and MacDiarmid (1965), Pliskoff and
Goldiamond (1966), Hobson (1975), and Lat-
tal (1975) used schedules of reinforcement
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where the number of responses per reinforcer
were the discriminative stimuli. In the present
study, reinforcement density provided the ba-
sis for discrimination.
Using a signal detection analysis, Rilling

and MacDiarmid (1965) studied how pigeons
discriminated fixed ratio (FR) reinforcement
schedules. When a center key came on, one of
two FR schedules was arranged for respond-
ing on it. Meeting the center-key requirement
darkened that key and turned on two side
keys. After the lower valued FR, which may
be considered the signal plus noise (S + N),
a left-key peck was reinforced and a right-key
peck darkened the chamber. After higher val-
ued FR, which may be considered noise (N),
a right-key peck was reinforced and a left-key
peck darkened the chamber. The discrimina-
bility of the signal plus noise (S + N) sched-
ules from the noise (N) schedules was mea-
sured from isosensitivity curves where the
coordinates were the conditional probabilities
of left-key pecks given signal plus noise, P(Hit)
= P(LIS + N), and of left-key pecks given noise
alone, P(False Alarm) = p(LIN). These choice
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probabilities provided a sensitive index of the
pigeon's discrimination of the schedules.

Since a major difference between reinforce-
ment schedules is their reinforcement density,
and since that difference has been shown to
control rates and probabilities of responding
(Catania and Reynolds, 1968; Herrnstein,
1970), the present study examined the discrim-
inative control exercised by different reinforce-
ment densities.
The discriminability of reinforcement den-

sity was examined in two ways. First, isosensi-
tivity (ROC) curves were determined to see
how well pigeons discriminated schedules dif-
fering in their reinforcement probability, p,
and corresponding reinforcement density, Nd.
A discriminability index, d', was found for the
actual birds by comparing the obtained data
to points and curves derived from assuming
various models of optimizing ideal observer
performance (an observer that maximizes ob-
tained reinforcement).

Second, decision rules were estimated from
the data and compared to an ideal observer's
decision rules. A decision rule is defined as the
conditional probability of a particular choice
given that certain situations or parameters of
situations have occurred. It describes the con-
trol of choice by various parameters of a stimu-
lus, such as reinforcement amount and prox-
imity of reinforcement opportunity to choice.
It also provides a framework in terms of which
various versions of maximization laws and
matching laws may be examined.

METHOD

Subjects
Four male White Carneaux pigeons with ex-

tensive multiple-schedule histories served. The
birds were maintained at approximately 80%
of their free-feeding weights throughout the
experiment.

Apparatus
Two standard Lehigh Valley pigeon test

chambers with special 1519B Pigeon Intelli-
gence Panels were used. Three translucent
Lehigh Valley pecking keys, 2.54 cm in diam-
eter, were spaced 8.25 cm apart center to center,
with the center of the outer keys 9.21 cm from
the chamber sides. All keys were 25.40 cm from
the floor. A model 111-05 stimulus light trans-
illuminated each key. A peck of at least 9.0 g

(.9 N) operated a key's microswitch. The key
colors were red, green, and yellowish white for
the left, right, and center, respectively.
The bottom of a feeder aperture (an opening

5.72 cm wide and 5.08 cm deep) was cen-
tered 10.0 cm above the floor. Two pellet feed-
ers in each box dispensed pellets into the hop-
per. One feeder delivered 20-mg pellets after
designated center-key pecks, and after correct
side-key pecks under some conditions. The sec-
ond feeder delivered either 45-mg pellets or
97-mg pellets, depending on the condition.
The sounds of the different pellets as they
fell into the hopper were discriminably dif-
ferent to a human observer. The hopper light
was illuminated for 2.7 sec upon feeder oper-
ation.
A houselight located above the center key

was illuminated during most of the procedure
except after a peck at an incorrect key during
pretraining.

Stimuli
The two stimuli to be discriminated in the

present situation may be viewed from two dif-
ferent perspectives. One emphasizes that each
stimulus is a schedule of reinforcement; the
other looks at each stimulus as a distribution
of the number of reinforcement opportunities
programmed on a center key.
From the first view, two T-schedules of re-

inforcement, one rich in reinforcement, Srich'
the other lean, Slean were overlapping stimuli
to be discriminated in a choice situation. A
T-schedule (Schoenfeld, Cumming, & Hearst,
1956) consists of a T-sec cycle which contains
a subcycle, tD, the time period when behavior
may be reinforced with some probability, p =
p(SR+ IR). The T-schedule modifications used
here were similar to Weissman's (1961)
changes, particularly his procedure of cueing
the beginning of the tD portion of a 90-sec
T-cycle by illuminating the key. With this
procedure, only the first response in tD pro-
duces a reinforcer, with probability p(SR+ R)
= 1. In the present experiment, each trial's
12-sec stimulus period contained four 3-sec
cycles during which a substimulus sampled
from one of the two p-valued T-schedule stim-
uli was presented.
From the other view, these two schedule

stimuli can be considered as consisting of
binomial distributions of the number of re-
inforcement opportunities in the sampled sub-
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stimulus, with each of the two schedule stim-
uli yielding different frequencies of the same
16 possible substimuli, as shown in both Fig-
ure 1 and Table 1. As noted above, each sub-
stimulus sample consisted of four consecutive
light-cued 3-sec cycles (tD = T = 3). On each
3-sec cycle, the first center-key peck darkened
that key and could be followed by reinforce-
ment. The probability of reinforcement for a
center-key peck was p(SR+ IRa) = .75 when the
rich schedule was in effect and .25 when the
lean schedule was in effect. If a bird failed to
peck the key in 3 sec, food was not delivered
and the next 3-sec cycle was immediately initi-
ated. Each set of four cycles will be referred to
as a substimulus sample, S.. The pigeon's task
was to discriminate whether the rich or the
lean schedule was in effect during this sample
of four cycles.
There are four levels of description of the

stimuli.
1. On a "gross molar" or gross level, each

probabilistic reinforcement schedule, either the
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Fig. 1. Two sets of binomial frequency distributions
show the actual rich and lean stimulus reinforcement
distributions for center-key-pecks. The substimulus
densities, the number of possible reinforcement oppor-
tunities in four cycles, ranged from 0 to 4. On the rich
schedule the probability of reinforcement for the first
center peck in a cycle, p, was .75, and on the lean p
was .25.

rich (p = .75) or the lean (p = .25) is viewed
as a single "stimulus", here called Srich and
Slean respectively: sampling considerations are

of no concern.
2. At the "molar" level, all substimulus sam-

ples with the same number of reinforcements
are viewed as the same "stimulus". Each sub-
stimulus, S,, has a reinforcement density,
D(Sn), equal to Nd, the number of center-key
peck reinforcement opportunities over the four
cycles in the substimulus. Density, the defin-
ing characteristic of a "stimulus" at this level
of analysis, ranges from zero to four rein-
forcements per substimulus, giving rise to five
such "stimuli". The same-density substimu-
lus, SNd, is the general member of a given
"stimulus" set, with density Nd. This level of
analysis distinguishes between number of re-
inforcements within a sample stimulus but not
between the particular 3-sec cycles within that
12-sec stimulus period on which those rein-
forcements are programmed.

3. At the "'molecular" level, the definition
of a "stimulus" involves the pattern of rein-
forcement in a substimulus. Each substimulus
is represented as a four-digit binary number.
A number such as 0001 indicates a sample
with three cycles without reinforcement op-
portunities followed by one cycle with an op-
portunity. The substimuli, Sn, are numbered
from 0000 to 1111. The left-most digit repre-
sents the cycle furthest in time from choice,
and the right-most represents the cycle im-
mediately before choice.

4. At the "micro" level, the definition of a
"stimulus" depends on whether or not there is
a reinforcement opportunity on a particular
cycle, t-seconds preceding choice, irrespective
of what is programmed for its neighbors.
There are 16 possible combinations in a 4-

cycle substimulus. These are shown in Table 1
along with the probability that the particular
substimulus will occur given that the rich (.75)
or lean (.25) schedule was presented. The prob-
ability that a particular set of four events will
occur was obtained by expanding the bino-
mial (p + q)4 with p = .75 or .25 and q = 1
- p. Actual presentation frequencies deviated
somewhat from the expected frequencies be-
cause of sampling. Therefore, both the ex-
pected and actual frequencies of each event
across the 256 trials in a session are given in
the table.
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Table 1
Description of stimuli. For each of the five possible molar classifications of substimuli with
number of reinforced cycles, NI, going from 0 to 4, and each of the 16 possible molecular
substimuli, S", going from 0000 to 1111, the theoretical and sampled probabilities of rein-
forcement are given for the rich (LC), p = .75, and the lean (RC), p = .25, schedules. The
sum of the molecular frequencies equals the molar frequencies. On a molecular level 0
indicates a nonreinforced cycle and 1 a reinforced cycle, the digit on the right being
closest to choice. The theoretical and sampled numbers of occurrences of molar classified
substimuli and molecular substimuli in the 256 trials from a session are also given.

Gross Molar
Molar Level: Molecular Frequency of
Number of Level: Rich frequency Lean frequency Corrects
reinforcers Substimulus (LC) (RC) (LC + RC)

in a number in

substimulus binary Theo- Theo- Theo-
Nd notation retical Sampled retical Sampled retical Sampled

0000 0.5 1 40.5 38 41 39
0 0.5 1 40.5 38 41 39

1000 1.5 1 13.5 17 15 18
0100 1.5 1 13.5 16 15 17
0010 1.5 3 13.5 14 15 17
0001 1.5 2 13.5 10 15 12

1 6.0 7 54.0 57 60 64
1100 4.5 3 4.5 4 9 7
1010 4.5 5 4.5 6 9 11
1001 4.5 6 4.5 4 9 10
0110 4.5 3 4.5 5 9 8
0101 4.5 6 4.5 6 9 12
0011 4.5 4 4.5 4 9 8

2 27.0 27 27.0 29 54 56
1110 13.5 17 1.5 2 15 19
1101 13.5 14 1.5 1 15 15
1011 13.5 11 1.5 0 15 11
0111 13.5 12 1.5 2 15 14

3 54.0 54 6.0 5 60 59
1111 405 38 0.5 0 41 38

4 40.5 38 0.5 0 41 38

128 127 128 129 256 256

A molecular-level stimulus, even 0000 or
1111, could occur with either schedule stim-
ulus. However, the greater the number of cy-
cles having a reinforcement opportunity, the
greater the likelihood that the rich schedule
was in effect. Therefore, the lean (or rich)
schedule was more likely to be in effect when
0 or 1 (or 3 or 4) reinforcement opportuni-
ties were presented on a trial (respectively).
Substimuli with 2 reinforcement opportuni-
ties occurred about equally often given either
schedule.
The procedure used here may be interpreted

not only in terms of four cycles of a cued T-
schedule but also in terms of a cued random-
interval (RI) or variable-interval (VI) schedule

with an average interval length equal to 3 sec
times p(SR+ IRe), which is % sec and % sec for
the lean and rich stimuli, respectively. The T-
schedule in some ways resembles a VI sched-
ule, and therefore the results from the present
experiment may help to interpret multiple
and concurrent VI-VI schedule performance.
For the organism, a cued T-schedule differs
from clocked VI (in which the beginning of
an interval is timed from the end of the first
interval, irrespective of the organism's behav-
ior) in two ways: (a) the beginning of every
cycle (interval) was cued and (b) the first re-
sponse in the first cycle (interval) could be re-
inforced. The cue light that began the docked
cycle and the reinforcement schedule brought
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the birds near the hopper and insured a short
latency center-key peck at the beginning of
each cycle. This presumably insured the ob-
servation of reinforcement delivery. Clock-
determined cycle length together with con-
stant reinforcement probability within each
cycle provided a precise a priori description
of a trial's four-cycle reinforcement pattern
and a uniquely defined substimulus.
A number of possible distributions could

have been used to program a substimulus' re-
inforcement opportunities during the trial's
stimulus period. Rilling and MacDiarmid
(1965), Pliskoff and Goldiamond (1966), and
Hobson (1975), used nonoverlapping distribu-
tions of response events. Because decision rules
that reflect how various aspects of the gross
schedule stimuli control choice were of inter-
est here, it was important to have the dis-
crimination difficult enough to guarantee that
the birds would make a number of errors. To
insure this, there had to be trials where the
particular temporal sequence of reinforcement
and nonreinforcement opportunities could
have come from either schedule stimulus dis-
tribution. This overlap of the two well-defined
stimulus distributions could allow some of the
notions from signal detection theory to be ap-
plied and examined. On a trial, for each cycle
within a substimulus sample from a stimulus
distribution, the first key peck had to have the
same reinforcement probability. Hence, bino-
mial distributions, 83(N,p) and /(N,l -p),
with N = 4 (cycles), lean schedule p value of
.25 and rich schedule p value of .75 were dic-
tated.

Procedure
The experiment was divided into two stages,

pretraining and training. Sessions were 76.8
min and 256 trials long. During training, the
stimuli to be discriminated were the lean and
rich reinforcement schedules described above.
During pretraining, however, the probability
of reinforcement for a center-key peck for the
rich schedule was 1.0 and for the lean sched-
ule was 0. During the first step of pretraining,
the substimulus consisted of two 3-sec cycles.
Within a trial, each cycle's first key peck was
reinforced with the same probability as all
other cycles in that trial and always darkened
the center key and, at first, also the house-
light, both of which were reilluminated at the
start of the next cycle. If no pecks occurred the

light(s) remained on for 6 sec and no rein-
forcement was delivered.
On completion of the 12-sec stimulus pre-

sentation, a 6-sec choice period began with the
illumination of the two side keys, while the
center key either stayed dark or was darkened.
For a rich schedule substimulus, the first left-
key peck was reinforced ("Left Correct," or
LC) and a right-key peck was unreinforced
("Right Error," or RE). For a lean schedule
substimulus, the first right-key peck was rein-
forced ("Right Correct," or RC) and a left-
key peck was unreinforced ("Left Error," or
LE). The first side-key peck darkened and de-
activated both keys until the choice period
ended.
The second step of pretraining began when

at least 95% of the choices were correct for
two successive sessions. Each substimulus now
consisted of four cycles. The probability that
a center-key peck would be followed by rein-
forcement remained at 1.0 when the rich
schedule was in effect and at 0 when the lean
schedule was in effect. Corrective training
(given as needed) for position preferences was
to present the rich schedule continually for
excessive right-key pecking and the lean sched-
ule for excessive left-key pecking. Together, the
two pretraining steps took up to 30 sessions.
The four birds were then trained to discrim-

inate between the probabilistic rich (p = .75)
and lean (p = .25) schedules. Each bird was
trained under different biasing conditions un-
til discrimination performance was stable.
These conditions differed in terms of size of
the pellet obtained for correct choices of the
left and right keys: For a correct left-key peck,
LC, pellet sizes were 97 mg, 45 mg, 20 mg,
20 mg, 20 mg, and for a correct right-key peck,
RC, they were 20 mg, 20 mg, 20 mg, 45 mg, and
97 mg, for Conditions 1, 2, 3, 4, and 5, respec-
tively. Thus the ratios of pellet sizes for cor-
rect left-key to correct right-key pecks under
the five conditions were, in order, 5:1, 2.25:1,
1:1, 1:2.25, 1:5. The corresponding relative
amounts of reinforcement for correct left-key
pecks were .833, .692, .500, .308, and .167.
Data were obtained at each biasing condi-

tion after choice behavior stabilized. Stabili-
zation was said to have occurred when the
direction of change in left-key peck proba-
bility, p(L), had reversed itself at least twice
after a session, and the average of the next two
sessions' change was less than ±.05. Data were
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first collected following training with pellets
of equal size (20 mg) for both correct left-key
and correct right-key pecks (Baising Condi-
tion 3). Then half the birds were given a 97-
mg pellet for correct left-key pecks and a 20-
mg pellet for correct right-key pecks (Biasing
Condition 1), and the other half were given
a 45-mg pellet for correct left-key pecks and
a 20-mg pellet for correct right-key pecks (Bi-
asing Condition 2). Then the birds in Biasing
Condition 1 were switched to Biasing Condi-
tion 2, and the birds in Biasing Condition 2
were switched to Biasing Condition 1. Next,
the conditions were reversed with the choice
now biased to the right; half the birds were
given a 20-mg pellet for correct left-key pecks
and a 97-mg pellet for correct right-key pecks
(Biasing Condition 5), and half were given a
20-mg pellet for correct left-key pecks and a
45-mg pellet for correct right-key pecks (Bias-
ing Condition 4). Then Biasing Conditions 4
and 5 were switched for each group of birds.

RESULTS
Figure 2 shows the sensitivity data of Birds

27, 29, 31, and 85. The probability of a left-
key peck given that a rich schedule sample was
presented, P(Hit), is shown as a function of
the probability of a left-key peck given that
the lean schedule sample was presented,
P(False Alarmn). The x's on the solid isosensi-
tivity curves, also called receiver operating
characteristic (ROC) curves, are plots of theo-
retical probabilities of hits versus false alarms
expected for the distributions shown in Fig-
ure 1, given (in a continuous model described
below) three different levels of sensitivity,
or d'. These x's would be obtained if a pi-
geon followed a decision rule described by
statistical decision theory. A particular inte-
gral value of substimulus reinforcement den-
sity serves as a criterion. For substimuli per-
ceived to have a reinforcement density above
this criterion only left-key pecks are made;
for substimuli below, only right-key pecks
are made.
These three isosensitivity functions are

found by determining P(Hit) and P(False
Alarm) coordinates from an appropriate Le-
besguc integral of the binomial distributions
in Figure 1, on the assumption that the means
of the rich and lean stimuli were separated by
2.0, 1.5, and 1.0 reinforcement opportunities
(maximal to moderate separation). For the bi-

nomial distributions in Figure 1, criteria were
set at each boundary where the number of re-
inforcement opportunities incremented. These
criteria were used to establish the points in-
dicated by x's shown in Figure 2.
To test whether or not birds in some sense

"counted" the number of reinforcements in
a substimulus, performance was compared to
predictions obtained from an ideal observer
who counted and whose performance depended
on an assumed discrete distribution. Perfor-
mance was compared also to predictions ob-
tained from an ideal observer who did not
count whose performance depended on an as-
sumed pointwise discontinuous distribution.
The details of the models are presented in the
Appendix. Two versions of each model are
considered. One assumes that only the differ-
ence between the mean number of reinforce-
ments for the rich and lean schedule decreases
(while the variance remains constant), and the
other assumes that the differences between
probability of reinforcement for the rich and
lean schedules decrease, producing a decrease
in separation between means. These two forms
of the two models are presented so that the d'
values corresponding to the theoretical points
or curves may be more clearly interpreted
and more nearly comparable to results from
other experiments. The actual data points did
not cluster around the points predicted by
either form of the discrete counting model,
suggesting that the birds did not, in the sense
defined by these models, "count" reinforce-
ments.
At the gross molar level, if the birds fol-

lowed the statistical decision rule described
earlier and correctly identified each substimu-
lus density, the probability of hits and false
alarms obtained would fall on the top isosen-
sitivity curve. Points below this line indicate
that performance is worse than that of the
second ideal observer (d' = 2.19). Biases intro-
duced by changing relative amount of rein-
forcement for correct left-key and correct right-
key pecks should appear as different points on
the same isosensitivity curve.

Greater sensitivity is displayed in Figure 2
by empirical points lying closer to the top one
of the curves for ideal observers. Point cluster-
ing indicates a lack of day-to-day variation.
The degree of the sensitivity for the four birds,
in order from least to most sensitive bird, is
85, 27, 29, and 31, with the sensitivities of
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CIRCLED SYMBOLS ARE
AVERAGES FOR 4 DAYS

BIRD 27

BIRD 31

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 .0

P (FALSE ALARMS)
Fig. 2. Isosensitivity curves. The probability of a Hit, P(Hit), is equal to the number of correct left-key pecks

divided by the number of possible correct left-key pecks. The probability of a False Alarm, P(False Alarm), is
equal to the number of incorrect left-key pecks divided by the number of possible correct right-key pecks. The
solid lines show isosensitivity curves for three values of d'. The top curve would be obtained if the subject fol-
lowed a second ideal decision rule (see text).

Birds 27 and 29 being similar. The values of
d' for many of the conditions were usually
between the top and bottom isosensitivity
curves, except for Bird 85 at Biasing Condi-
tions 3 and 5. The biasing effect was least
for Bird 31.
The difference between maximum attain-

able performance and the obtained perfor-

mance might be attributable to normally dis-
tributed random errors. Later information
will show that this assumption is not appro-
priate here, insofar as it is possible to obtain
representations of the decision rules and to
find nonnormally distributed error sources,
such as the effect of the decrease in stimulus
control as a function of increasing time and

1.0

BIRD 29
0.4
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refore decreasing memory for important ditions, the behavior of this bird was similar
!nts. to that of the others.
rhe effects of three experimental variables Recall from above that substimuli may be
it may control choice will be analyzed: (a) described on three other levels. On the molar
relative reinforcement amount for a cor- level, only reinforcement density is considered

rt left-key peck, (b) the number of reinforce- and substimuli take on reinforcement density
nt opportunities in a substimulus, and (c) values from 0 to 4. On a molecular level, there
nforcement opportunity proximity in time are 16 substimuli, each indicating a particular
the choice point. reinforcement pattern that may occur over the
Sias, which is the probability of a left-key 4 cycles. On the molecular level, substimuli
Ik, p(L) = (LC + LE)/(LC + LE + RE + are described using binary notation. For ex-

was examined as a function of biasing ample, substimuli with density value of 1 at
idition in Figure 3. Relative Reinforcement the molar level can have molecular values of
biasing, AOL, is the ratio of pellet size de- 0001, 0010, 0100, and 1000.
ered for a correct left-key peck to the sum Figure 4 shows both molecular and molar
left-correct pellet size and right-correct pel- level data. At the molecular level, each row
size. Bias, or p(L), is an increasing function shows one bird's p(L) for each substimulus
increasing ALL: as shown in Figure 3, the density, during the four final sessions of train-
t-key peck probability ranged from a p(L) ing on that condition. Each point indicates
about .31 with a relative reinforcement the probability of a left-key peck to a given
vount of .17 to a p(L) of about .80 with a substimulus, p(LjSn), under the given condi-
ative reinforcement amount of .83. tion. At the molar level, for each biasing value,
Bias did not differ substantially from bird the decision rules are indicated by the average
bird. Bird 85's one anomalous point might left-peck probability for substimuli at a given
attributable to its data being from the first density, P(LISNd). This weighted average was
Ldition conducted (Biasing Condition 3). found by summing P(LISn) for each same-den-
is one point corresponds to a loss of sub- sity substimulus, weighted by the frequency of
ntial reinforcement as seen by the low d' in the substimulus, P(LISN) = X P(LjSn)P(Sn).ure 2. After exposure to other biasing con- D(8n) =Nd

The empirical fact that the molecular points
do not fall on the line through the weighted

BIAS NUMBER average P(LISNd) suggests that, although the
5 4 3 2 I substimuli are equivalent on a molar level by1.0 l l definition, they are not equivalent on a molec-

ular level. That is, at the molecular level,
0.8 _ BIRD 27 0 substimuli act differently in determining the

329 0 left-key peck probability. The proximity of31 a
85 * reinforcement to choice appears to have a

0.6 substantial impact. This will be considered
next.
The effect of the proximity to choice of a

0.4 - reinforcement opportunity will be shown first,
followed by the effect of the proximity to
choice of the omission of a reinforcement op-

0.2 portunity. At the molar level, density 1 sub-
stimuli, D(S") = Nd = 1, provide exactly one
reinforcement opportunity, and density 3 sub-

0.0 0.2 0.4 0.6 0.8 1.0 stimuli provide exactly 3 reinforcement oppor-
tunities. For the density 3 substimuli, one of

RELATIVE AMOUNT OF the four cycles has a reinforcement opportunity
REINFORCEMENT omitted, making density 1 and 3 substimuli

ig. 3. The probability of a left-key peck, p(L), comparabile opposites.
tted against the relative amount of reinforcement, Figure 5 shows the effects of the distance
, (biasing), for correct left-key pecks. between a choice and a single reinforcement
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Table 2
Expected molar-level decisions to peck left to a substimulus with a reinforcement density
of Nd. The predictions of P(LJSiv), based upon matching the probability of a left-key peck
for a given density substimulus, to the relative expected payoff for that choice, are shown
as a function of the number of cycles in a substimulus containing a reinforcement op-
portunity (Nd) and the relative reinforcement amount for correct left-key pecks (Biasing
Condition). Left correct probability to a given density substimulus, P(LISN ) times the
relative reinforcement amount, APL, equals amount of reinforcement for correct left peck
relative to amount for left correct pecks and right correct pecks, yielding expected payoff.

Expected p(L)* at the Molar Level

Probability Relative
Number of of a L or expected
reinforcers R being Relative payoff

in a correct reinforcement for a
substimulus p(LCISNd) amount, Ap Expected payoff left peck

Nd Biasing (p(RCISNd)) APL APR EP(LISNd) EP(RISNd) Rel EP(LISNd)
4 1 1.0000 .833 .167 .833 .000 1.0000

2 (.0000) .692 .308 .692 .000 1.0000
3 .500 .500 .500 .000 1.0000
4 .308 .692 .308 .000 1.0000
5 .167 .833 .167 .000 1.0000

3 1 .9125 .833 .167 .763 .014 .982
2 (.0845) .692 .308 .634 .026 .961
3 .500 .500 .468 .042 .915
4 .308 .692 .282 .059 .828
5 .167 .833 .153 .071 .683

2 1 .4821 .833 .167 .402 .086 .823
2 (.5179) .692 .308 .334 .166 .668
3 .500 .500 .241 .259 .482
4 .308 .692 .148 .359 .292
5 .167 .833 .080 .432 .157

1 1 .1093 .833 .167 .091 .148 .280
2 (.8907) .692 .308 .076 .274 .216
3 .500 .500 .055 .445 .109
4 .308 .692 .034 .617 .052
5 .167 .833 .018 .742 .024

0 1 .0256 .833 .167 .021 .162 .116
2 (.9744) .692 .308 .018 .300 .056
3 .500 .500 .013 .487 .026
4 .308 .692 .008 .675 .012
5 .167 .833 .004 .812 .005

opportunity and a following choice at all five
biasing conditions. The deviation in the left-
key peck probability from the average proba-
bility, Ap(L), is shown as a function of the
cycle during which the reinforcement op-
portunity occurred. Here, Ap(L) equals p(LIS,)
minus the average of P(LISn) with D(S") = 1.
In other words, Ap(L) equals p(L) for a sub-
stimulus with a single reinforcement opportu-
nity minus the average p(L) for all density 1
substimuli. Note that the expected substimu-
lus for density 1 substimuli is (1/4,1/4,1/4,1/4),
which is close to substimulus (0,0,0,0). There-
fore, AP(L) reflects not only the deviation of
p(L) from the average p(L), but to a greater

extent the effect of adding an opportunity to
a given cycle. The value of Ap(L) is largest
when a reinforcement opportunity occurs
closest to choice, as is the case for substimulus
0001. It rapidly decreases as the opportunity
moves away from choice. The change in slope
for biases 4 and 5 is less pronounced for Birds
85 and 29, since for these last two cases these
birds almost always pecked the right key. For
the other birds, a smaller but similar effect is
seen for bias 5.

Figure 6 shows -Ap(L) as a function of the
distance between a reinforcement omission and
a following choice at all five biasing condi-
tions. The value of -Ap(L) equals -(p(LIS,)
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Fig. 4. Left-key-peck probability, p(L) for each individual substimulus at each biasing, arranged so that all
same-reinforcement-density substimuli are grouped above that reinforcement density number. The solid line
shows the average p(L) for each substimulus.

minus the average p(LISn, D(Sn) = 3)). That is,
the right-hand side of the equation is the value
of p(L) for a substimulus with a single rein-
forcement omission in the ith cycle, minus the
average p(L) of those density 3 substimuli, all
times minus one. This deviation reflects the
control exerted by a "missing" reinforcement
opportunity. The curves in Figures 5 and 6
have very similar shapes. The bias'ing effect

in Figure 6 is reversed from that in Figure 5,
in the sense that there is more flattening for
lower numbered biasing conditions when pay-
off is greater for a correct left than for a right
choice. In either case, the flattening may rep-
resent a floor or a ceiling effect at the more
extreme values. The birds, ranked in order of
increasing sensitivity to reinforcement omis-
sion, were Birds 31, 27, 29, and 85, with Birds
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Fig. 5. The positive change in p(L), equal to the p(L) of a substimulus with a single reinforcement opportunity
on the ith cycle, minus the average p(L) of those density 1 substimuli, plotted as a function of the cycle before
choice, i, in which that reinforcement opportunity fell, p(L) = P(LIS,.) - average p(LIS, D(SR) = N4 = 1). Effect of
biasing is also shown.
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Fig. 6. The negative change in p(L), equal to the negative ot the p(L) to a substimulus with a single

reinforcement opportunity omission on the ith cycle, minus the average p(L) of those density 3 substimuli, is
plotted as a function of the cycle before choice, i, in which that reinforcement opportunity fell (absence case),
-Ap(L)=-(p(LjSn) - average p(LjS, D(Sn)=N4=3)). This is the complementary graph to the previous one.
The effect of biasing is shown.

29 and 85 being very close. This ranking cor-

relates well with the overall sensitivity as seen

in isosensitivity curves in Figure 2.

DISCUSSION

Figure 2 suggests that the sensitivity dis-
played by three birds was not greatly inferior,

at a gross molar level, to that of an ideal ob-
server. Let us now ask how choice behavior
was controlled at the gross molar, molar, mo-

lecular, and micro levels, and in what sense

birds did not discriminate reinforcement den-
sity with maximum possible sensitivity.
The present data suggest that choice behav-

ior was controlled by reinforcement factors,

BIRD 29

BIRD 85
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including both the amount of reinforcement
for a correct choice and the number of rein-
forcement opportunities during the stimulus
period, as well as the length of time by which
stimulus events preceded choice.

It will be shown here that the decision rules
at the molar level for making a left-key peck
as a function of the number of reinforcement
opportunities in a substimulus can be de-
scribed as matching-to-relative-expected pay-
off. This deviation from an optimizing ideal
observer's rule in which the response alterna-
tive with the higher expected payoff is maxi-
mized appears to be due to diminution in the
control over choice by earlier events within
the substimulus, i.e., by forgetting. This molar
matching law fails to account for systematic
differences in P(L) at the molecular level.
Maximizing and matching models will next

be contrasted with actual performance at the
four different levels of analysis. These contrasts
will help to identify a bird's decision rule and
to show how it differs from an ideal observer's
rule.
A general form of matching and maximiz-

ing derived from Herrnstein's (1970) account
will be applied at each level. Assume first that,
in a discrete-trial choice situation, obtained re-
sponse probability may be treated as equiva-
lent to the relative rate of responding in a free
operant situation. Obtained response proba-
bility, p(L), may be conditionalized upon a
given stimulus condition, Si, or p(LISi). As de-
scribed above, this stimulus condition is speci-
fied differently at each level of description.
Assume second that programmed relative rein-
forcement proportion is equivalent to pro-
grammed relative reinforcement rate, rather
than obtained relative reinforcement rate. The
specification of P(LISi) calls for a generaliza-
tion of the notion of programmed relative re-
inforcement proportion to the programmed
relative expected payoff for a left-key peck in
a given stimulus condition. The relative EP(LI
S,) is the ratio of the expected payoff for a
left-key peck, EP(LISj) to the sum of the ex-
pected payoffs for both key pecks:

Rel EP(L IS) =_ EP(LISj)EP(L Si) + EP(R IS)
(1)

The expected payoff for a left-key peck in a
given stimulus condition, EP(LjSj), may be
interpreted as the product of the conditional

probability of reinforcement for a left-key peck
in the given stimulus condition, p(LCISj), and
its relative reinforcement amount, ALL:

EP(L S) = P(LCISi) * ALL;
EP(RISi) = P(RCISj) * ApR

= [1 - P(LCJSi)] * (1 - ALL).

(2)

(3)
The relative reinforcement amount, A3L =
ALC!(ALC + ARC), where ALC is the amount of
reinforcement for a correct left-key peck and
ARC is the amount of reinforcement for a cor-
rect right-key peck. Relative expected payoff
retains the common notion of programmed
relative amount of reinforcement (Catania,
1963).
A decision rule, p(LISi)*, is designed to pre-

dict the obtained probability of a left peck,
P(LISi). Specifically, such a rule predicts the
left-key peck proportion under a given set of
stimulus conditions as a function of the rela-
tive expected payoff for making that response
under those stimulus conditions. Two such
decision rules will be considered here. One is
a maximizing and the other is a matching
rule.
To compactly write the maximizing rule, an

indicator notion will be introduced (Loeve,
1963). The indicator of set A is the function
which assigns the value 1 to all points in A
and value 0 at all points in the complement,
A'. When A = (xIx > k}, the indicator of A
will be denoted by Ik(X) (sometimes written
k(X). Here, k = .5 and x = Rel EP(LISi).
Therefore,

I.5(X) = 1 if x > .5
0 if x . .5.

The maximization relation states that P(LISj)
is equal to the indicator of the set of all Rel
EP(LISj) whose values are greater than .5. The
maximizing rule then is:

P(LIS)* =15 Rel EP(LISi)
1 if Rel EP(L Si) > .5

- 0 if Rel EP(L S) < .5, (4)
and the matching rule is:

P(LISi)# = Rel EP(LISi).
At the gross molar level, two sets of decision

rules might apply depending on the extent
to which the rich- and lean-schedule stimuli
were discriminable from one another. The
case where the two stimuli are not discrimi-

(5)
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nable is equivalent to a probability learning
situation with p(LJSi)* = p(L)* since payoff-
controlled response bias completely overshad-
ows probability of stimulus-presentation con-
trolled bias (Nevin, 1969). The corresponding
first form of maximizing, p(L) = 15 Rel EP(L)
is called overall response alternative maximiz-
ing where, irrespective of stimulus differences,
one alternative is always chosen. This may be
contrasted with a first form of matching, p(L)*
= Rel EP(L), which is called overall payoff
matching, where an alternative is chosen in
proportion to overall payoff, a degenerate
form of expected payoff. The case where the
stimuli are perfectly discriminable may be
idealized by a second form of either maxi-
mizing or matching. According to conditional
maximizing, p(LIS)* = I.5 Rel EP(L Si) where
i = lean, rich, one response alternative is al-
ways chosen on trials where a particular stim-
ulus is presented (Coulson, Koffer, & Coulson,
1971; Herrnstein & Loveland, 1975). This is
the same as matching the probability of a re-
sponse to the stimulus presentation probabil-
ity, p(LjSi)* = p(Sj), a degenerate form of
matching to relative expected payoff when rel-
ative reinforcement amount is disregarded.

Figure 3 showed that as biasing increased,
the overall bias, p(L), linearly increased. This
result suggests imperfect discrimination at the
gross molar level. The slope of the lines sug-
gests a slight degree of overall payoff under-
matching in the direction away from overall
response alternative maximizing. Conditional
maximizing would not be expected because an
ideal observer could only imperfectly discrim-
inate between the two overlapping probabil-
istic stimuli. Although matching in the prob-
ability learning sense at the gross molar level
seems more clearly indicated than conditional
maximizing for unequal biasing, the birds did
discriminate between the two stimuli. It is
advisable, therefore, to continue the analysis
to see how overall matching arises when there
is this discrimination.
Both a maximizing model and a matching

model are considered next at the molar level.
For an optimizing ideal observer, the maxi-
mizing model is:

P(LISN ) = 1.5 Rel EP(LISNd),
Nd = 0, 1, 2, 3, 4; Si = SNd

(6)
and P(LISN) is independent of the proximity

of a reinforcement opportunity to a following
choice. Sensitivity could be reduced by any de-
viation from this ideal decision rule due to
any combination of control by: (a) proximity
of events to choice, (b) biasing, and (c) a ratio
of expected payoff for the optimal response
relative to the other response too close to one.
To maximize reinforcement for choice within
the range of biases used here, the optimizing
ideal observer always pecks right for density 0
and 1 substimuli, left for density 3 and 4 sub-
stimuli, and pecks either right or left for den-
sity 2 substimuli, depending on whether bias-
ing was to the right or left. This ideal decision
rule maximizes reinforcement for all biasing
since Rel EP(LISNd) < .3 and Rel EP(R ISNd) >
.7 for density 0 and 1 substimuli, and Rel
EP(RISNd) < .3 and Rel EP(LISNd) > .7 to den-
sity 3 and 4 substimuli, as was shown in Ta-
ble 2. For density 2 substimuli, an ideal ob-
server always maximizes by pecking the higher
payoff side key. This conditional maximizing
could produce matching of the response prob-
ability to stimulus presentation probability,
as described previously.
At the molar level, empirical evidence of

Terman and Terman (1972), Coulson et al.
(1971), and Herrnstein and Loveland (1975)
suggests that an alternative will be maximized
in a noncorrection situation as long as relative
reinforcement rate for alternative responses
differs significantly from .5. Also, the same key
should be pecked following events with the
same value, where value is measured along a
critical dimension such as reinforcement den-
sity. If substimulus reinforcement density alone
controls choice, one response alternative would
be maximized.
A value of Rel EP(RjISi) somewhat close to

.5 does not always interfere with maximizing.
For instance, rats maximized p(L) when Rel
EP(L) = .6 in a situation where a left-bar press
led to a variable-interval delay of 10 sec fol-
lowed by a differential-reinforcement-of-other-
behavior 5-sec schedule (tand VID 10 DRO 5),
and a right-bar press led to a tand VID 25
DRO 5-sec schedule (Coulson et al., 1971). In
the present case, for low-reinforcement density
substimuli, p(L) should tend toward 0 and for
high density substimuli, toward 1, since cor-
rect choices were differentially reinforced, and
differences in the temporal location of rein-
forcement for a substimulus were irrelevant,
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as were the variations in the comparison stim-
uli in the Coulson et al. experiment.

Pigeons on a concurrent variable-ratio vari-
able-ratio schedule maximized reinforcements
per response by pecking the key correlated with
the smaller ratio so that p(L) often approxi-
mated 0 or 1 (Herrnstein & Loveland, 1975).
In the present study, both alternative key
pecks were often reinforced for almost every
substimulus and for same-density substimuli
since the rich and lean schedule overlapped.
However, this should not have much effect on
maximization as long as relative amount of
reinforcement for left- versus right-pecks is not
too close to .5 (Herrnstein & Loveland).
The points connected by the solid lines in

Figure 4 illustrate that the empirical decision
rules deviated from the ideal observer's maxi-
mizing decision rule, Equation 6, in three
ways. First, although density 0 and 4 substim-
uli produced correct choices almost always by
minimizing p(L) in the former and maximiz-
ing p(L) in the latter case, density 1 and 3
substimuli, which should have produced the
same p(L) as 0 and 4, respectively, did not.
Hence, at the molar level density was not dis-
criminated as an ideal observer would. Second,
the proximity of a reinforcement opportunity
to choice produced a large ordered deviation
in each p(LISn) from the average p(LIS.) of
same-density substimuli, as shown in Figures
4, 5, and 6. Third, the probability of pecking
a given key to same-density substimuli was
neither the same nor maximized for all same-
density substimuli (except when there were no
other substimuli of the same density). This in-
dicated that the birds neither "counted" rein-
forcement opportunities nor perfectly discrim-
inated density; either each substimulus was
not discriminated or one response alternative
for a given substimulus was not maximized.

Instead of behaving like ideal observers, the
birds behaved as if they had a second strategy
which minimized the reinforcement loss for
choice that is produced by poor memory for
events in the stimuli. With this second strat-
egy, they matched some central tendency of
p(L), e.g., the average p(L) or the median p(L)
for same density substimuli, to the relative ex-
pected payoff for those same density substim-
uli. The matching model's predicted left-peck
probability, p(LjSi)*, equals the relative ex-
pected payoff for a left-key peck to a given
density of reinforcement substimulus. The Si

in this case are all the substimuli with the
same density, SNd.

p(LISNd)*= Rel EP(L |SNd),
D(S.) = Nd,
Nd=O, 1,2,3,4. (7)

The predicted p(LISNd) versus substimulus re-
inforcement density is plotted in the top left
panel of Figure 7. The biasing parameter gen-
erates the five curves, each plotted separately
in its own panel.
This prediction in effect states that a sub-

ject matches its choice to the relative expected
values of the alternatives (Herrnstein, 1970).
If a correction procedure were used, instead of
the present noncorrection procedure, so that
an incorrect choice did not "waste" a reinforce-
ment opportunity, the present model would
reduce to Herrnstein's model. Then the prob-
ability of a trial ending with a correct peck,
given any substimulus, would be one, and only
relative bias would have an effect. The bias-
ing does not change the shape of the theoreti-
cal p(LISNd) decision curves, it just shifts
them. Also, sensitivity remains constant across
changes in biasing. Temporal location of rein-
forcement opportunities within a substimulus
should have no effect.
On a molar level, consider that the left-key

peck probability for each same-density sub-
stimulus, p(LISNd), closely matches the relative
expected payoff for left-key pecks to those
same-density substimuli. Compare the average
P(LISNd) lines in Figure 4 to the predicted
P(LISNd)* lines in Figure 7. Since the relation-
ship between P(LISn) and reinforcement op-
portunity proximity is nonlinear, as was shown
in Figures 5 and 6, the median p(LIS.) at each
biasing value and each substimulus density
better describes the decision rules than the
average shown in Figure 4. However, the val-
ues obtained with the two measures did not
differ very much. A measure of central ten-
dency that represents performance at the mo-
lar level masks the effect of individual same-
density substimuli. In Figure 7, the median
p(LISn), D(St) = Nd for Birds 27, 29, and 31, is
compared to the expected p(LISNd) for each
bias. Bird 85's data were omitted for three
reasons: (a) the effect of biasing was disorderly
as shown by the amomalous point in Figure 3,
and in the bottom panel, biasing condition 3,
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in Figure 4; (d) there was not much of an ef-
fect of including Bird 85's data other than at
the anomalous point; and (c) actual data
points were preferred as representatives of
central tendency, rather than the average of
two values. This situation is possible only
when using three birds. The predicted points
are the circled points connected by lines.
Where the obtained points fall on the pre-
dicted values they are omitted. Only five (20%)
of the obtained points differed by more than
5% from the predicted P(LISNd)r values.
The overall matching obtained at both gross

molar and molar levels was an average pro-
duced by more left pecks to substimuli with
reinforcement closer to choice than to sub-
stimuli having the same reinforcement but
with reinforcement further from choice.
Matching at the molar level should be the

second best strategy. Shifts away from over-
all matching produce lower total amounts of
reinforcement. If a bird shifts to the left
more for 1110 to maximize reinforcement for
choice given that substimulus, then it also
shifts to the left for 0001. What is gained
by the shift for 1110 is more than offset by
the loss for the shift at 0001. This assumes
that a bird discriminates density as well as
possible given a limited memory. To have
constant overall sensitivity, changes in re-
sponse probability to one substimulus must
result in changes in response probability to
all. A bird cannot shift bias for just one
or two substimuli because that would change
its overall sensitivity to reinforcement den-
sity. It can only shift overall bias. This
forces a bird to set the overall bias and estab-
lish an anchor point. The Rel EP(LISNd) sets
the bias for a set of same-reinforcement den-
sity substimuli, thereby setting the overall bias.
This rationale for matching does not, how-

ever, explain how matching behavior is gener-
ated. Local maximizing in some form would
occur if the criteria for choice were condi-
tional on, for instance, certainty about sub-
stimuli. There is no way to distinguish local
maximizing of reinforcement from molecular
matching in the present study because there
is no independent estimate of the perceived
value of a substimulus; nor is there an inde-

pendent estimate of the degree of impaired
sensitivity to the events within a substimulus.
One property of substimuli is known, however
-the temporal property.
The effect of concatenating events in a tem-

poral sequence must be taken into account to
explain p(LISn) at the molecular level. First,
the temporal properties of S,, will be discussed.
At this level temporal factors partially account
for the deterioration of reinforcement-density
discrimination. For same-density substimuli,
p(L) decreased as the reinforcement opportu-
nities occurred further from choice, as was
seen in Figure 5. For the obverse case, p(L)
increased to a smaller extent as the missing
reinforcement opportunity occurred further
from choice, as was seen in Figure 6. Re-
inforcement opportunity occurrence exerted
more control over choice than nonoccurrence.
At the micro level, control by a single event

preceding choice decreased as a function of
the event's temporal separation from choice.
In Figure 8, control by an event x seconds
before a choice in the present experiment is
compared to control in a delayed matching-to-
sample experiment by Berryman, Cumming,
and Nevin (1963). There, the sample was either
a red, green, or blue center key. An -observing
center-key peck turned it off and, after a delay,
turned on the two side-key comparison stimuli.
A peck on a side key with a hue that matched
the center key's hue produced reinforcement;
a nonmatching side-key peck was followed by
a blackout.
To directly compare these results, compara-

ble strength-of-control measures must be used.
In the Berryman et al. (1963) experiment, the
correct choice probability, p(C), may be said
to define stimulus control by a sample event.
As time between the sample event and the
choice increased from 0 to 25 seconds, the
median p(C) for three birds decreased from
approximately 1.0 to .5.

Matters were more complicated in the pres-
ent study. In the unbiased condition, the event
whose control over choice was examined was
either a single addition of a reinforcement
opportunity on one of four cycles (density 1
substimuli) or a single omission of a reinforce-
ment opportunity on one of four cycles (den-

Fig. 7. Median left key peck probability for three birds, median P(LjSN ), to same density substimuli. The
curves shown in panel 1 are the expected left-key-peck probabilities, P(LISNj)*, given Equation 7.
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Fig. 8. The left y-axis has the median probability of a

correct match-to-sample for three pigeons. The tri-
angles represent that median plotted against different
delays between the discriminative stimulus and the
choice, from Berryman, Cumming, and Nevin (1963).
The right-hand axis has the probability of a correct
discrimination scaled in the reverse manner. The inde-
pendent variable in the second case is time before
choice of the singular occurrence of a reinforcement
opportunity for substimuli with a reinforcement den-
sity of 1, and time before choice for the singular non-
occurrence of a reinforcement opportunity for sub-
stimuli with a reinforcement density of 3.

sity 3 substimuli). As time between either the
single addition or omission and choice in-
creases, p(C) = p(LC) + P(RC) increases.
These increases in control show up as in-

creases in the probability of an error, p(E). For
density 1 substimuli, an ideal observer would
always peck the right key, since EP(L Sn) <
.055; any increase in p(L) as the single event
occurred closer to choice, would lead to slight
increases in p(LC) and to large decreases in
p(RC) with their sum, p(C), decreasing. Simi-
larly, as the omitted reinforcement opportu-
nity occurred closer to choice, p(L) would de-
crease and error probability, p(E), would
increase. Hence, an increase in control by these
single events would be reflected in a decrease
in p(C), which would go from approximately
.9 for no control to .5 for the maximum con-

trol achieved in the present experiment. The
maximum control would occur for the shortest
time span; that is, the cycle only 3 sec away
from choice, with p(C) =.5. To read strength
of control directly in both experiments, the
right hand y-axis of Figure 8 was inverted.
The median strength of single event control
for Birds 29, 31, and 85 in the present experi-
ment (on the right hand y-axis) may then be

directly compared to the median strength of
discriminative control for Birds 170, 171, and
172 in the Berryman et al. (1963) experiment
(on the left-hand y-axis), as a function of the
intervening interval size. The three curves
have similar shapes, the upward displacement
of the extra reinforcement curves from the
missing reinforcement curves being due to the
differential effect of an additional event on a
blank background versus a missing event on
a background involving reinforcement.
Two models show how results from the mo-

lar and micro levels may be combined to ex-
plain performance at the molecular level. Be-
cause the class of same-density substimuli has
only one member each for density 0 and 4,
any predictions at the molar level for them
are identical to predictions at the molecular
level; therefore, differences between those pre-
dictions are trivial. For density 1, 2, ana 3,
there are four, six, and four substimuli, re-
spectively. In the first model, a weighted mean
value of p(LfSn) = Nd is set by the mat-ching
law, and the deviations from this weighted
mean are set by some forgetting law. For den-
sity 1 and 3 substimuli the memory curves are
relatively simple. Both the curve for single
reinforcement events (density 1) and the flat-
ter curve for single missing reinforcement
events (density 3) show the decrement in con-
trol exerted by events over time as found in
delayed-matching-to-sample studies. For den-
sity 2 substimuli, there are two alternative ap-
proaches. Either a third kind of forgetting
curve has to be invoked to describe control by
the compound of two reinforcement opportu-
nities and two missing reinforcement oppor-
tunities, or control of the ensemble of events
has to be predicted from how each event's
control over choice combines with the control
by other events. A memory scale can be con-
structed from the concatenation of such events
(Krantz, Luce, Suppes, & Tversky, 1971). Alter-
natively, in a second model, the remembered
value of each substimulus Js probabilistically
determined, with each value of S,, being a ran-
dom variable with a mean and a variance.
One response alternative would be maximized
as a function of the perceived relative expected
payoff which changes trial to trial, an idea
similar in some respects to Shimp's (1976) mo-
mentary maximizing model, the average across
trials equaling that predicted by the match-
ing law.
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APPENDIX
Two models of an ideal observer could be

assumed: one based on a discrete binomial dis-
tribution, and the other based on a pointwise
discontinuous binomial distribution. The dis-
crete form has probability represented by a ver-
tical line at each possible integral substimulus
density value, Nd, that could serve as a cri-
terion. The pointwise discontinuous (almost-
everywhere continuous) distribution has prob-
ability represented by bars centered over these
same criterion points, extending % a reinforce-
ment opportunity to the left and to the right.
If the discrete distribution is assumed, each
isosensitivity function consists of a set of dis-
crete points as shown by the x's on the top
left isosensitivity curve, d' = 2/a-. To find
P(Hit) and P(False Alarm) for a given crite-
rion, Nd, and separation between means, AM,
the discrete binomial probability function is
integrated from the criterion value to plus
infinity. For P(Hit), the discrete probability
function for the rich stimulus is integrated
by summing all values of P(Hit) at substimu-
lus density values, Nd, above the criterion.
The value of P(Hit) at a given substimulus
density value, Nd, is equal to the frequency
of LC divided by the frequency of LC + RE
at that density. For P(False Alarm) the dis-
crete probability function for the lean stimu-
lus is integrated by summing each value of
P(False Alarm) determined at a given Nd
value above the same criterion.
A second ideal observer model can be repre-

sented as having only a pointwise discontin-
uous probability density distribution. In the
only pointwise discontinuous case, the discrete
binomial distributions are modified in order
to obtain isosensitivity points intermediate to
values arising at the discrete criterion points
that were obtained from the discrete binomial
probability distributions. To connect these
isosensitivity points, probability at a given
integral value of Nd in the probability distri-
bution is replaced by the numerically propor-
tional probability density. The probability
density at the left of an interval, p(SNd), is as-
signed to non-integral values within the inter-
val, Nd to Nd + . This converts the discrete
probability distribution into a probability
density distribution (as was done by Egan,
1975). To find the theoretical values of P(Hit)
and P(False Alarm) for the only pointwise dis-

continuous case, one integrates over each con-
tinuous portion up to the criterion and then
sums the integrals of these portions.

Different d' values were assigned to the dis-
crete and the only pointwise discontinuous
isosensitivity functions. First, d' was calculated
in the discrete case. For the two functions
lower on the graph, the two additional d's
were then found by either assuming a fixed
standard deviation while the difference be-
tween means of the two distributions, AM,
gets smaller as sensitivity deteriorates, or by
assuming that the degradation in sensitivity
is due to a decrease in the difference between
p and q, where q = 1 - p.
Three theoretical sets of isosensitivity points

in the discrete probability case, corresponding
to d' = 2.31, 1.73, and 1.15, were obtained in
the following fashion. The value of d' = (M1
- M2)/o- (Egan, 1975), were found for the dis-
tributions when their means were maximally
separated (2.0 reinforcement opportunities);
moved together by % maximal separation
(1.5); and by 1/2 maximal separation (1.0).
The means, Ms ich and Mgl, or M1 and M2,
were found from M = Np, where M = Nd, the
density of the gross level stimulus, N = num-
ber of cycles, and p = probability of reinforce-
ment for the first center-key peck in a cycle.
For the maximum separation of the two dis-
tributions, AM = Me -Ms , is calculated
as follows: M rich = 4 * 3 = 3 = Nd for the
rich density substimuli; Mlean = 4 * - 1 =
Nd for the lean density substimuli, and
AM = Mih -Ms = 3-1 = 2.0. For three
sets of points, a fixed standard deviation, a- =
VNP(l-P) = V4(%)(¼) = V% = .866 was
assumed for this first discrete case. Since the
inverse, I/a- = 1.1547, for the constant a-, and
d' = I /a- AM, d' values were 2.31, 1.73, and
1.15, when AM = 2.0, 1.5, and 1.0, respectively.

In the only pointwise discontinuous case,
the area from the criterion to infinity is the
same as the corresponding sum in the discrete
case so that P(Hit) and P(False Alarm) are the
same at the criterion points and are linear
in between. The d' values assigned to the iso-
sensitivity curves shown in Figure 2 are de-
rived from the only pointwise discontinuous
probability distribution case next. These d'
values in the pointwise discontinuous case are
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2.19, 1.64, and 1.10, which are smaller than
the corresponding isosensitivity point values.
Remember that d' = 1 v- AM. While the dif-
ference between the means is the same in the
discrete and only pointwise discontinuous case,
the standard deviation in the former, a- = .866
is smaller than the a- = 1.10 of the latter, as
will be shown for the only-pointwise discon-
tinuous case. The mean, ,u, used to calculate
the variance and the corresponding standard
deviation is found from:

4 n+l
/ _ X xp(x)dx = 3.5,

n=O n

for the rich stimulus and 1.5 for the lean
stimulus. Note that the maximal separation,
AM = 2 = 3.5 - 1.5, which was the same as
in the discrete case.
The variance is found from:

4 n+lI
c 2 = X; | x(-,)p(x)dx.

n=O n

Instead of setting a fixed a-, if the degra-
dation in sensitivity were due to moving p
towards q, AM values would be the same. As
p - q approaches 0, in the discrete case a- ap-
roaches 1, which is not very different from .866,
and in the almost continuous case, a- would
approach 1.04, which is not very different from
1.10. The values of d' in either case would
not be very different.

REFERENCES
Berryman, R., Cumming, W. W., & Nevin, J. A. Acqui-

sition of delayed matching in the pigeon. Journal
of the Experimental Analysis of Behavior, 1963, 6
(1), 101-107.

Catania, A. C. Concurrent performances: a baseline
for the study of reinforcement magnitude. Journal
of the Experimental Analysis of Behavior, 1963, 6,
299-301.

Catania, A. C., & Reynolds, G. S. A quantitative analy-
sis of responding maintained by interval schedules
of reinforcement. Journal of the Experimental Anal-
ysis of Behavior, 1968, 11, 327-383.

Coulson, G., Koffer, K., & Coulson, V. Maximization
of pellet density by rats in a two-choice operant
situation. Psychonomic Science, 1971, 24(3), 145-146.

Egan, J. P. Signal Detection theory and ROC analysis.
New York: Academic Press, 1975.

Estes, W. K., Burke, C. J., Atkinson, R. C., & Frank-
mann, J. P. Probabilistic discrimination learning.
Journal of Experimental Psychology, 1957, 54(4),
233-239.

Herrnstein, R. J. On the law of effect. Journal of the
Experimental Analysis of Behavior, 1970, 13, 243-
266.

Herrnstein, R. J., & Loveland, D. H. Maximizing and
matching on concurrent ratio schedules. Journal of
the Experimental Analysis of Behavior, 1975, 24,
107-116.

Hobson, S. L. Discriminability of fixed-ratio schedules
for pigeons: effect of absolute ratio size. Journal of
the Experimental Analysis of Behavior, 1975, 23, 25-
35.

Krantz, D. H., Luce, R. D., Suppes, P., & Tversky, A.
Foundations of Measurement. (Vol. 1) New York:
Academic Press, 1971.

Lattal, K. A. Reinforcement contingencies as discrimi-
native stimuli. Journal of the Experimental Analysis
of Behavior, 1975, 23, 241-246.

Loeve, M. Probability Theory. (3rd Ed.) Princeton:
Van Nostrand, 1963.

Nevin, J. A. Signal detection theory and operant be-
havior. Review of D. M. Green and J. A. Swets
Signal detection theory and psychophysics. Journal
of the Experimental Analysis of Behavior, 1969, 12,
475480.

Pliskoff, S. S., & Goldiamond, I. Some discrimination
properties of fixed-ratio performance in the pigeon.
Journal of the Experimental Analysis of Behavior,
1966, 9, 1-9.

Rilling, M., & MacDiarmid, C. Signal detection in
fixed-ratio schedules. Science, 1965, 148, 526-527.

Schoenfeld, W. N., Cumming, W. W., & Hearst, E. On
the classification of reinforcement schedules. Pro-
ceedings of the National Academy of Sciences, 1956,
42, 563-570.

Shimp, C. P. Probabilistic discrimination learning in
the pigeon. Journal of Experimental Psychology,
1973, 97, 292-304.

Shimp, C. P. Short-term memory in the pigeon: rela-
tive recency. Journal of the Experimental Analysis
of Behavior, 1976, 25, 55-62.

Swets, J. A., Tanner, W. P., & Birdsall, T. G. Decision
processes in perception. In J. A. Swets (ed.), Signal
detection and recognition by human observers. New
York: Wiley, 1964.

Terman, M., & Terman, J. S. Concurrent variation of
response bias and sensitivity in an operant psycho-
physical test. Perception and Psychophysics, 1972,
11(6), 428-432.

Weissman, A. Impairment of performance when a
discriminative stimulus is correlated with a rein-
forcement contingency. Journal of the Experimental
Analysis of Behavior, 1961, 4, 365-369.

Received November 8, 1976
Final acceptance January 30,1979


